
Query Processing in EXASolution

stefan.mandl@exasol.com

June 09 2015



I Distributed and parallel standard compliant SQL database
system (Transactions, ACID, Backup and Recovery, . . . )

I Optimized for analytical workloads

I . . . and it is fast



How fast? ⇒ http://www.tpc.org/tpch/1

(TPC-H is an ad-hoc, decision support benchmark.)

1Last checked on June 7th 2015

http://www.tpc.org/tpch/






EXASOL History

I 90ies: Research Project at University of Erlangen-Nürnberg

I 2000: Company is founded

I 2006: Pilot customer Karstadt-Quelle uses EXASolution in
production

I 2008: Many new records in TPC-H benchmark

I 2010: Most successful vendor on analytical database systems
in Germany (BARC)

I 2012: Inclusion in Gartner’s “Magic Quadrant for Data
Management Systems”

I 2014: 80 customers in 12 countries, 100 TB TPC-H
benchmark





EXASolution Environments

I A cluster of standard servers
I Standard server hardware: 2 Quad/Hexa/Ten Core CPUs,

16–786 GB RAM, 2–24 SAS/SATA HDD, GBit Ethernet
(1GiB, 10GiB), Free vendor choice: Dell, HP, IBM, FSC,
Oracle (Sun), . . .

I Our own cluster operating system: EXAClusterOS

I Cloud Platforms
I EXACloud
I BigStep (bigstep.com)
I Soon: Azure (http://azure.microsoft.com/)

I EXAOne (commercial one node version)

I EXASolo (free-to-use one node VM image, DBRAM
limitation)

bigstep.com
http://azure.microsoft.com/


Query Processing

I Basic Ideas

I Compiler

I Engine

I Data



Basic ideas

I massive parallel processing: utilize all the available cores in
every single machine

I distributed processing: execute even single queries on all
available machines at the same time (SPMD paradigm)

I avoid synchronization (no master node, no main execution
thread)

I low-level hardware characteristics matter
I EXASOL’s in-memory design principle:

I Algorithms are written, as if all data is stored in RAM
I Clever machinery takes care of guaranteeing this assumption

(most of the time)



The Compiler



EXASOL SQL

I SQL
I In practice, many versions of SQL
I EXASOL’s version is designed for compatibility
I Query preprocessor enables users to adopt the input lanuage

I Standard Compiler Architecture

1. Tokenizer: String → Tokens
2. (If preprocessor script is defined: Tokens → SQL Tokens)
3. Parser: SQL Tokens → SQL Syntax Tree
4. Analyzer: SQL Syntax Tree → Query Graph
5. (check if the result is cached)
6. Optimizer: (Query Graphi → Query Graphi+1)*, finally creates

Execution Graph



Optimization and Statistics

I Rule based optimization
I Evaluate constants
I Remove empty tables (WHERE 0=1)
I Move conditions from HAVING to WHERE
I Push filters into sub-selects
I . . .

I Cost based optimization of Join order
I Table/column statistics
I Estimation of filter selectivity
I ⇒ Try to minimize the size of intermediate results
I Statistics are always up-to-date

EXASolution by-and-large is tuning free
EXASOL considers sub-optimal execution graphs like bugs!



Table Replication and Index Creation

I Tables are distributed across all machines in the cluster

I Small tables may additionally be replicated completely on
every machine → some operations are much faster

I Trade-off: replicating arbitrary large tables defies the purpose
of a distributed database

I BUT: typical BI schemas (star, snowflake) involve very large
and very small tables ⇒ replication allows to perform Joins
without global communication

I Indexes are created, updated, and deleted completely
automatically as seen fit by the optimizer as many algorithms
in databases can be implemented efficiently with index-based
approach.



The Engine



Parallel Processing via Pipelining

I Reminder: The compiler generates an Execution Graph

I Execution Graphs typically consist of several Excution
Pipelines which are executed one after the other

I Each Execution Pipeline consists of a number of Pipeline
Stages

Main concepts for Execution Pipelines:

I Pipeline Stage: represents an operation to be performed

I Pipeline Job: encapsulates the state of computations

I Job buffer: Enables asynchronous control flow between
Pipeline Stages

I Worker: basically a thread of execution

I Scheduler: Allows to adapt execution behaviour at runtime!

Provides a powerful abstraction which allows to describe local
(per-node) parallel execution.



Pipeline for SELECT sum(y) FROM T WHERE x > 5;



Pipeline Jobs

I Most jobs reference data via row number

I Data access is handled by lower levels

I Only load data that is actually needed!

I → index based filtering can eliminate many rows

Jobs before and after a Join operation



Distributed Processing

Distributed Pipelines

I Create jobs on remote machines

I Jobs may reference data on different machines

I Data can be transfered on demand

I Various communication primitives (sync, global AND, global
OR, 1:1, 1:n message passing)

I Distributed exception handling

I Most distributed algorithms in EXASolution do not need to
track jobs they create on remote machines!



Distributed Processing – 2

Example: Global Join (both tables are distributed)



The Data



Columns and Tables: Columnar layout

I Tables are stored column-oriented

+ Keeps only columns in RAM which are actually needed

+ Column values are ‘close to each other’ ⇒ hardware caching!

+ Column values have the same struture which enables
sophisticated column-local compression techniques (e.g.
ALTER TABLE ADD COLUMN ... does not influence
compression)

– INSERT, UPDATE, and DELETE are harder to implement
efficiently, but: EXASolution uses

I INSERT buffers
I DELETE markers

for tables and indexes



Columns and Tables: Horizontal partitioning

Tables are partitioned horizontally across all machines

→ For each table, every machine holds a subset of the rows

+ A given query is executed on all machines

+ Many algorithms can be written in a cluster-agnostic style

! Much better than vertical partitioning, where machines wich
do not contain relevant columns are idle



Compression
I Compression in EXASolution is applied per-column
I In-memory compression is dictionary based (single elements

can still be accessed)
I On-Disk compression is block-based
I Raw values are needed for complex computations
I Equi-Joins and some filters can be performed with in-memory

compressed values
I On-Disk compression is used for creating backups



Block Management

Remember the in-memory design principle!

I Data is in memory and if not, has to be read before access

I Our block management is basically the same as:

void* column = mmap (0,1024, PROT_READ|PROT_WRITE ,

MAP_SHARED ,fd ,0);

but highly tuned for EXASolution

I Hence, the acutally available RAM does not not limit
functionality, but performance

I In addition of putting data in RAM, make sure that processor
caches are utilized

I Typical RAM size: 10% of the raw data size.

I Transactions are mainly handled at this level

I We usually do not use files but our own distributed storage
system: EXAStorage



Wrap-up

Why is EXASolution fast for analytical workloads?
I We cover the complete stack:

I EXAClusterOS
I EXAStorage
I In-memory technology
I Parallel Processing: avoid locks
I Distributed Processing: avoid synchronization

I We pay attention to low level details (with O(n) algorithms,
the linear factors matter!)

I A number of tricks we learned over the last 15 years
. . . want to know more? ⇒ yes, we are hiring!

Free Download (EXASolo)
https://www.exasol.com/portal/display/
DOWNLOAD/Free+Trial

Let’s take a look . . .

https://www.exasol.com/portal/display/DOWNLOAD/Free+Trial
https://www.exasol.com/portal/display/DOWNLOAD/Free+Trial

	Introduction
	Query Compilation
	Query Execution
	Data Access


